4.8 Article

Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: Control of diffusional and surface-confined electrochemical processes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 11, 页码 4060-4070

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja042910c

关键词

-

向作者/读者索取更多资源

Magnetic nanoparticles consisting of undecanoate-capped magnetite (average diameter ca. 5 nm) are used to selectively gate diffusional and surface-confined electrochemical reactions. A two-phase system consisting of an aqueous buffer solution and a toluene phase that includes the suspended undecanoate-capped magnetic nanoparticles is used to control the interfacial properties of the electrode surface. Two different phenomena are controlled by attraction of the magnetic nanoparticles to the electrode by means of an external magnet: (i) The attracted magnetic nanoparticles form a hydrophobic layer on the electrode surface resulting in the blocking of diffusional electrochemical processes, while retaining the redox functions of surface-confined electrochemical units. (ii) For certain surface-immobilized redox species (e.g., quinones), the attraction of the magnetic nanoparticles to the electrode surface alters the mechanism of the process from an aqueous-type electrochemistry to a dry organic-phase-type electrochemistry. Also, bioelectrocatalytic and electrocatalytic transformations at the electrode are controlled by means of attraction of the magnetic nanoparticles to the electrode surface. Controlling the catalytic functions of the modified electrode by means of the magnetic nanoparticles attracted to the electrode is exemplified in two different directions: (i) Blocking of the bioelectrocatalyzed oxidation of glucose by glucose oxidase (GOx) using a surface-confined ferrocene monolayer as electron-transfer mediator. (ii) Activation of the microperoxidase-11 electrocatalyzed reduction of cumene hydroperoxide. In the latter system, the hydrophobic magnetic nanoparticles adsorb toluene, and the hydrophobic matrix acts as a carrier for cumene hydroperoxide to the electrode surface modified with the microperoxidase-11 catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据