4.6 Article

Regulation of CHK2 by DNA-dependent protein kinase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 12, 页码 12041-12050

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M412445200

关键词

-

资金

  1. NCI NIH HHS [R01CA82257] Funding Source: Medline

向作者/读者索取更多资源

Chk2 is a critical mediator of diverse cellular responses to DNA damage. Activation of Chk2 by DNA damage requires phosphorylation at sites including Thr(68). In earlier work, we found that an activity present in rabbit reticulocyte lysates phosphorylates and activates Chk2. We now find that hypophosphorylated Chk2 can be phosphorylated at Thr68 by various subcellular fractions of HEK293 cells. This activity is sensitive to the phosphatidylinositol 3'-kinase-like kinase inhibitor wortmannin, but not to caffeine. DNA enhances the Chk2 phosphorylation by cellular fractions in vitro. The wortmannin-sensitive Chk2 kinase activity is present in fractions from ATM-deficient cells. In contrast, Chk2 was not efficiently phosphorylated at Thr68 in vitro by fractions from cells with a defective DNA-dependent protein kinase (DNA-PK) catalytic subunit. Chk2 is phosphorylated by purified DNA-PK in vitro. Endogenous Chk2 coimmunoprecipitates Ku70 and Ku80. In a series of matched cell lines having and lacking functional DNA-PK, Chk2 activation by exposure of cells to ionizing radiation, or to camptothecin was consistently diminished in the absence of DNA-PK. Down-regulation of DNA-PKcs by either siRNA or a chemical inhibitor attenuated radiation-induced Chk2 phosphorylation. Ionizing radiation-induced Chk2 phosphorylation was wortmannin-sensitive in ATM-defective cells with depleted ATR. These results suggest that DNA-PK augments ATM and ATR in activation of Chk2 by DNA damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据