4.6 Article

Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route

期刊

LANGMUIR
卷 21, 期 7, 页码 2665-2667

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la050275y

关键词

-

向作者/读者索取更多资源

The fabrication of a superhydrophobic surface is demonstrated via a wet chemical route, and this method offers advantages of being cleanroom free, cost efficiency, and wide applicability. The preferable growth of ZnO crystalline forms a microstructured surface, and a variety of alkanoic acids were adopted to tune the surface wettability. Although all surfaces show an advancing contact angle greater than 150 degrees, they substantially differ in the wetting mechanisms. It is found that only when the length of alkanoic acid is greater than 16, the microstructured surface shows a stable superhydrophobicity, in which the Cassie state dominates. While for those moderate-length alkanoic acids (CS-C14), their corresponding surfaces have a tendency to fall into the Wenzel state and display a great contact angle hysteresis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据