4.5 Article

Timescale for radiation belt electron acceleration by whistler mode chorus waves

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2004JA010811

关键词

-

向作者/读者索取更多资源

Electron acceleration inside the Earth's magnetosphere is required to explain increases in the similar to MeV radiation belt electron flux during magnetically disturbed periods. Recent studies show that electron acceleration by whistler mode chorus waves becomes most efficient just outside the plasmapause, near L = 4.5, where peaks in the electron phase space density are observed. We present CRRES data on the spatial distribution of chorus emissions during active conditions. The wave data are used to calculate the pitch angle and energy diffusion rates in three magnetic local time (MLT) sectors and to obtain a timescale for acceleration. We show that chorus emissions in the prenoon sector accelerate electrons most efficiently at latitudes above 15 degrees for equatorial pitch angles between 20 degrees and 60 degrees. As electrons drift around the Earth, they are scattered to large pitch angles and further accelerated by chorus on the nightside in the equatorial region. The timescale to accelerate electrons by whistler mode chorus and increase the flux at 1 MeV by an order of magnitude is approximately 1 day, in agreement with satellite observations during the recovery phase of storms. During wave acceleration the electrons undergo many drift orbits and the resulting pitch angle distributions are energy-dependent. Chorus scattering should produce pitch angle distributions that are either flat-topped or butterfly-shaped. The results provide strong support for the wave acceleration theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据