4.5 Article

A computational approach to predicting cell growth on polymeric biomaterials

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30266

关键词

computational modeling; cell growth; degradable polymers; rat lung fibroblasts; normal foreskin fibroblasts; cell culture; combinatorial design; tyrosine-derived polyarylates

资金

  1. NIBIB NIH HHS [R01 EB00286, P41 EB001046] Funding Source: Medline

向作者/读者索取更多资源

A predictive model that can correlate the chemical composition of a biomaterial with the biological response of cells that are in contact with that biomaterial would represent a major advance and would facilitate the rational design of new biomaterials. As a first step toward this goal, we report here on the use of Logical Analysis of Data (LAD) to model the effect of selected polymer properties on the growth of two different cell types, rat lung fibroblasts (RLF, a transformed cell line), and normal foreskin fibroblasts (NFF, nontransformed human cells), on 112 surfaces obtained from a combinatorially designed library of polymers. LAD is a knowledge extraction methodology, based on using combinatorics, optimization, and Boolean logic. LAD was trained on a subset of 62 polymers and was then used to predict cell growth on 50 previously untested polymers. Experimental validation indicated that LAD correctly predicted the high and low cell growth polymers and found optimal ranges for polymer chemical composition, surface chemistry, and bulk properties. Particularly noteworthy is that LAD correctly identified high-performing polymer surfaces, which surpassed commercial tissue culture polystyrene as growth substratum for normal foreskin fibroblasts. Our results establish the feasibility of using computational modeling of cell growth on flat polymeric surfaces to identify promising lead polymers for applications that require either high or low cell growth. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据