4.6 Review

Plant eco-devo: the potential of poplar as a model organism

期刊

NEW PHYTOLOGIST
卷 166, 期 1, 页码 39-48

出版社

WILEY
DOI: 10.1111/j.1469-8137.2005.01369.x

关键词

adaptive recursion; ecological developmental genetics; ecomolecular synthesis; plant eco-devo; poplar; Populus trichocarpa; single nucleotide polymorphisms

向作者/读者索取更多资源

Ecological developmental genetics is the study of how ecologically significant traits originate in the genome and how the allelic combinations responsible are maintained in populations and species. Plant development involves a continuous feedback between growth and environment and the success of individual genotype x environment interactions determines the passage of alleles to the next generation: the adaptive recursion. Outbreeding plants contain a large amount of genetic variation, mostly in the form of single nucleotide polymorphisms (SNPs). One of the challenges of eco-devo is to distinguish neutral SNPs from those with ecological consequences. The complete genome sequence of Populus trichocarpa Torr. & A. Gray will be a significant aid in this endeavour. Occurring from California to Alaska, this is the first ecologically 'keystone' species to be sequenced. It has a rich natural history and is an obligate outbreeder. The individual sequenced, Nisqually-1, appears to be heterozygous on average about every 100 bp over the c. 500 million bp of the genome. Overlaid on this within-individual variation is some ecologically based between-individual genotypic variation evident across the distribution of the species. The synthesis of information from genomics and ecology is now in prospect. This 'ecomolecular synthesis' is likely to provide a rich insight into the genomic basis of plant adaptation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据