4.5 Article

Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597):: Effects on anandamide and oleoylethanolamide deactivation

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.104.078980

关键词

-

资金

  1. NIDA NIH HHS [DA12413, DA12653, DA12447] Funding Source: Medline

向作者/读者索取更多资源

Fatty acid amide hydrolase (FAAH) is an intracellular serine enzyme that catalyzes the hydrolysis of bioactive fatty acid ethanolamides such as anandamide and oleoylethanolamide (OEA). Genetic deletion of the faah gene in mice elevates brain anandamide levels and amplifies the effects of this endogenous cannabinoid agonist. Here, we show that systemic administration of the selective FAAH inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 0.3 mg/kg i.p.) increases anandamide levels in the brain of rats and wild-type mice but has no such effect in FAAH-null mutants. Moreover, URB597 enhances the hypothermic actions of anandamide (5 mg/kg i.p.) in wild-type mice but not in FAAH-null mice. In contrast, the FAAH inhibitor does not affect anandamide or OEA levels in the rat duodenum at doses that completely inhibit FAAH activity. In addition, URB597 does not alter the hypophagic response elicited by OEA (5 and 10 mg/kg i.p.), which is mediated by activation of peroxisome proliferator-activated receptor type-alpha. Finally, exogenously administered OEA (5 mg/kg i.p.) was eliminated at comparable rates in wild-type and FAAH(-/-) mice. Our results indicate that URB597 increases brain anandamide levels and magnifies anandamide responses by inhibiting intracellular FAAH activity. The results also suggest that an enzyme distinct from FAAH catalyzes OEA hydrolysis in the duodenum, where this lipid substance acts as a local satiety factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据