4.1 Article

Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1111/j.1600-0889.2005.00135.x

关键词

-

向作者/读者索取更多资源

Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SIZES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO2 content; the carbon cycle feedback factor increases from 1. 13 to 1.48 when global warming increases from 3.2 to 8 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据