4.4 Article

The impact of directed versus random movement on population dynamics and biodiversity patterns

期刊

AMERICAN NATURALIST
卷 165, 期 4, 页码 449-465

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/428595

关键词

spatial dynamics; biodiversity; population dynamics; habitat fragmentation; biased dispersal; fitness-dependent dispersal

向作者/读者索取更多资源

An improved understanding of dispersal behavior is needed to predict how populations and communities respond to habitat fragmentation. Most spatial dynamic theory concentrates on random dispersal, in which movement rates depend neither on the state of an individual nor its environment and movement directions are unbiased. We examine the neglected dispersal component of directed movement in which dispersal is a conditional and directional response of individuals to varying environmental conditions. Specifically, we assume that individuals bias their movements along local gradients in fitness. Random movers, unable to track heterogeneous environmental conditions, face source-sink dynamics, which can result in deterministic extinction or increase their vulnerability to stochastic extinction. Directed movers track environmental conditions closely. In fluctuating environments, random movers spread their bets across patches, while directed movers invest offspring in habitats currently enjoying propitious conditions. The autocorrelation in the environment determines each strategy's success. Random movers permeate entire landscapes, but directed movers are more geographically constrained. Local information constraints limit the ranges of directed movers and introduce a role for historical contingency in determining their ultimate distribution. These geographic differences have implications for biodiversity. Random movement maintains biodiversity through local coexistence, but directed movement favors a spatial partitioning of species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据