4.6 Article

Oxygen vacancies and ferromagnetism in CoxTi1-xO2-x-y -: art. no. 073908

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1868056

关键词

-

向作者/读者索取更多资源

Cobalt-doped titanium dioxide, or CTO, has emerged in the past 2 years as a semiconducting, transparent, room-temperature ferromagnet. Very recently it has been shown that the magnetism in CTO often originates in surface nanoparticles or Co-rich regions that have a much-enhanced substitutional Co content up to 40% of Ti sites, so that magnetic CTO is not a true dilute magnetic semiconductor (DMS), but rather a fairly high-density spin system. In this work we describe a computational study of Co-rich CTO using the generalized gradient approximation to the density functional theory within the supercell model. Our total energy calculations show a strong tendency for Co-atom clustering or segregation on Ti sites. There is also a strong tendency for the oxygen vacancies to form complexes with the Co atoms. In addition, we find that the oxygen stoichiometry plays an essential role in determining the system's magnetic order. The largest ordered moments require at least enough oxygen vacancies to put all of the Co atoms in the +2 charge state, as they indeed appear to be experimentally, so that the conventional DMS mechanism could only apply via n-type carriers. We find a small but not negligible spin density associated with Ti atoms near the vacancy sites, suggesting an F-center-mediated interaction between the much larger Co moments. We also present experimental data showing that the ferromagnetic remanence and coercive field increase with the n-type conductivity. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据