4.4 Article

Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes

期刊

CHEMBIOCHEM
卷 6, 期 4, 页码 653-658

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.200400249

关键词

alkylation; artemisinin; heme; malaria; synthesis; trioxaquine

向作者/读者索取更多资源

The sesquiterpene Artemisinin, an antimalarial drug that is effective against multidrug-resistant Plasmodium falciparum strains, contains a 1,2,4-trioxane, and the endoperoxide function plays a key role in its biological activity. However, its poor solubility means that hemisynthetic derivatives, such as artesunic acid are preferred for drugs. The reductive activation of the peroxide function of artemisinin by iron(II)-heme produces heme derivatives that are alkylated at meso positions by a C-centered radical derived from artemisinin. We checked if the alkylating ability of trioxane-based drugs toward heme, which might be related to its parasiticidal activity, is a general feature by comparing the chemical reactivity toward heme of the clinically relevant derivative artesunic acid and DU1301, a drug of the trioxaquine family, that is active against P.falciparum. Both artesunic acid and trioxaquine DU1301 efficiently alkyloted the heme macrocycle after activation of their peroxide function by the iron(II) of heme itself and thus gave rise to covalently coupled heme-drug products. This heme-drug adduct formation might be related to the high antimalarial activity of DU1301.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据