4.7 Article

Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 65, 期 5, 页码 719-725

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2004.10.005

关键词

carbon nanotubes; nanocomposites; mechanical properties

向作者/读者索取更多资源

Single-walled carbon nanotubes (SWNTs) dispersed with various solvents were incorporated into epoxy matrix via sonication method. Dynamics differential scanning calorimetry (DSC) results indicated that even small traces of residual solvent in the composite processing had a great impact on the cure reaction and subsequently affected the endothermic behaviors of the nanocomposites. The solvent selection for nanotube dispersion also had a significant influence on the Vicker's hardness and the flexural strength of the nanocomposites. The solvent effects are in the order of DMF > ethanol > acetone. SEM observation on the fracture surfaces of the nanocomposites did not explain the variance of the nanocomposites properties. The change trend of the thermal and mechanical properties was found to be related to the boiling point of respective solvent used. The results of thermogravimetric analysis (TGA) proved the existence of the residual solvent in the resulting nanocomposites. Further evidence of the solvent influence was obtained by Fourier transform infrared (FTIR) spectra, which displayed the difference in the molecular structure of the final nanocomposites depending on the solvent used. The solvent influence is attributed to the different amount of unreacted epoxide groups and the extent of cure reaction in the manufacturing process. (c) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据