4.7 Article

Mitochondrial associated metabolic proteins are selectively oxidized in A30P α-synuclein transgenic mice -: a model of familial Parkinson's disease

期刊

NEUROBIOLOGY OF DISEASE
卷 18, 期 3, 页码 492-498

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.12.009

关键词

Parkinson's disease; A30P; oxidative stress; lactate dehydrogenase; enolase; carbonic anhydrase; alpha-synuclein; protein oxidation

资金

  1. NIA NIH HHS [AG-105119, AG-10836] Funding Source: Medline
  2. NINDS NIH HHS [NS41786] Funding Source: Medline

向作者/读者索取更多资源

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra compacta. alpha-Synuclein is strongly implicated in the pathophysiology of PD because aggregated alpha-synuclein accumulates in the brains of subjects with PD, mutations in alpha-synuclein cause familial PD, and overexpressing mutant human alpha-synuclein (A30P or A53T) causes degenerative disease in mice or drosophila. The pathophysiology of PD is poorly understood, but increasing evidence implicates mitochondrial dysfunction and oxidative stress. To understand how mutations in alpha-synuclein contribute to the pathophysiology of PD, we undertook a proteomic analysis of transgenic mice overexpressing A30P alpha-synuclein to investigate which proteins are oxidized. We observed more than twofold selective increases in specific carbonyl levels of three metabolic proteins in brains of symptomatic A30P a-synuclein mice: carbonic anhydrase 2 (Car2), alpha-enolase (Enol), and lactate dehydrogenase 2 (Ldh2). Analysis of the activities of these proteins demonstrates decreased functions of these oxidatively modified proteins in brains from the A30P compared to control mice. Our findings suggest that proteins associated with impaired energy metabolism and mitochondria are particularly prone to oxidative stress associated with A30P-mutant alpha-synuclein. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据