4.7 Article

NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration

期刊

BRAIN
卷 128, 期 -, 页码 839-853

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awh424

关键词

corticospinal tract; gene therapy; neurotrophin-3; olfactory ensheathing glia; regeneration

向作者/读者索取更多资源

Adenoviral (AdV) vectors encoding neurotrophin-3 (AdV-NT-3) or the bacterial marker enzyme beta-galactosidase (LacZ gene) were used to transduce olfactory ensheathing glia (OEG) cultures. AdV vector-transduced OEG expressed high levels of recombinant neurotrophin as shown by in situ hybridization and enzyme-linked immunosorbent assay techniques. The biological activity of vector-derived NT-3 was determined in a dorsal root ganglia neurite outgrowth assay. Engineered cell suspensions were then injected into adult Fischer 344 rat spinal cord immediately after unilateral cervical (C4) corticospinal tract (CST) transection. Transplanted animals received a total of 200 000 cells; either non-transduced OEG or OEG transduced with AdV vectors encoding NT-3 or LacZ, respectively. At 3 months after injury, lesion volumes were significantly smaller in all OEG-transplanted rats when compared with control (medium-injected) rats. Anterograde tracing of the lesioned CST projection, originating from the contralateral sensorimotor cortex, showed a significantly greater number of distal CST axons only in OEG-NT-3-transplanted rats. Behavioural analysis was performed on all rats using open field locomotion scoring, and a forelimb reaching task with Eshkol-Wachman movement notation. Analysis of behavioural tests revealed no significant differences in recovery between experimental groups, although movement analysis indicated that possible compensatory mechanisms were occurring after OEG implantation. The results demonstrate that OEG transplantation per se can promote tissue sparing after injury, but, after appropriate genetic modification, these olfactory-derived cells become far more effective in promoting long-distance maintenance/regeneration of lesioned adult CST axons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据