4.4 Article

Functionalization of dental implant surfaces using adhesion molecules

出版社

WILEY
DOI: 10.1002/jbm.b.30183

关键词

adhesion molecules; osseointegration; RGD peptides; biomimetic coating

向作者/读者索取更多资源

The aim of the present study was to test the hypothesis that organic coating of titanium screw implants that provides binding sites for integrin receptors can enhance periimplant bone formation. Ten adult female foxhounds received experimental titanium screw implants in the mandible 3 months after removal of all premolar teeth. Four types of implants were evaluated in each animal: (1) implants with machined titanium surface, (2) implants coated with collagen 1, (3) implants with collagen 1 and cyclic RGD peptide coating (Arg-Gly-Asp) with low RGD concentrations (100 mu mol/mL), and (4) implants with collagen 1 and RGD coating with high RGD concentrations (1000 mu mol/mL). Periimplant bone regeneration was assessed histomorphometrically after 1 and 3 months in five dogs each by measuring bone implant contact (BIC) and the volume density of the newly formed periimplant bone (BVD). After 1 month, BIC was significantly enhanced only in the group of implants coated with the higher concentration of RGD peptides (p = 0.026). Volume density of the newly formed periimplant bone was significantly higher in all implants with organic coating. No significant difference was found between collagen coating and RGD coatings. After 3 months, BIC was significantly higher in all implants with organic coating than in implants with machined surfaces. Periimplant BVD was significantly increased in all coated implants in comparison to machined surfaces also. It was concluded that organic coating of machined screw implant surfaces providing binding sites for integrin receptors can enhance bone implant contact and periimplant bone formation. (c) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据