4.5 Article Proceedings Paper

Prediction of mechanical properties of human trabecular bone by electrical measurements

期刊

PHYSIOLOGICAL MEASUREMENT
卷 26, 期 2, 页码 S119-S131

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0967-3334/26/2/012

关键词

bone; mechanical properties; Young's modulus; ultimate strength; permittivity; conductivity

向作者/读者索取更多资源

In trabecular bone, the interrelationships of electrical and dielectric properties with mechanical characteristics are poorly known. Information on these relations is crucial for evaluation of the diagnostic potential of impedance techniques. In this study, electrical and dielectric properties, i.e. permittivity, conductivity, phase angle, loss factor, specific impedance and dissipation factor of human trabecular bone samples (n = 26, harvested from the distal femur and proximal tibia) were characterized in a wide frequency range (50 Hz-5 MHz). Mechanical properties, i.e. Young's modulus, ultimate strength, yield stress, yield strain and resilience of the samples (n = 20) were determined by using destructive compressive testing. Subsequently, measurements of electrical and dielectric properties were repeated after mechanical testing. The measurements were also repeated for the control samples (n = 6) that were not mechanically tested. Electrical, dielectric or mechanical properties showed no significant differences between the intact femoral and tibial samples. The electrical and dielectric parameters as well as the linear correlations between the dielectric and electrical parameters with mechanical parameters were strongly frequency dependent. At the frequency of 1.2 MHz, the relative Permittivity showed the strongest linear correlations with the Young's modulus (r = 0.71, p < 0.01, n = 20) and ultimate strength (r = 0.73, p < 0.01, n = 20). Permittivity and dissipation factor showed statistically significant changes after mechanical testing. Our results suggest that the measurements of low frequency electrical and dielectric properties may provide information on the mechanical status of trabecular bone and, possibly, may even help to diagnose bone microdamage. In the future, these measurement techniques may be further developed for use during open surgery, such as bone grafting or total hip replacement surgery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据