4.5 Article

Reducing mutational bias in random protein libraries

期刊

ANALYTICAL BIOCHEMISTRY
卷 339, 期 1, 页码 9-14

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2004.11.032

关键词

random mutagenesis; error-prone PCR; DNA shuffling; mutational bias

向作者/读者索取更多资源

The success of protein optimization through directed molecular evolution depends to a large extent on the size and quality of the displayed library. Current low-fidelity DNA polymerases that are commonly used during random mutagenesis and recombination in vitro display strong mutational preferences, favoring the substitution of certain nucleotides over others. The result is a biased and reduced functional diversity in the library under selection. In all effort to reduce mutational bias, we combined two different low-fidelity DNA polymerases, Taq and Mutazyme, which have opposite mutational spectra. As a first step, random mutants of the Bacillus thuringiensis cryCa1 gene were generated by separate error-prone polymerase chain reactions (PCRs) with each of the two polymerases. Subsequent shuffling by staggered extension process (StEP) of the PCR products resulted in intermediate numbers of AT and GC Substitutions, compared to the Taq or Mutazyme error-prone PCR libraries. This strategy should allow generating unbiased libraries or libraries with a specific degree of mutational bias by applying optimal mutagenesis frequencies during error-prone PCR and controlling the concentration of template in the shuffling reaction while taking into account the GC content of the target gene. (c) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据