4.7 Article

Control of synaptic strength and timing by the release-site Ca2+ signal

期刊

NATURE NEUROSCIENCE
卷 8, 期 4, 页码 426-434

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1417

关键词

-

向作者/读者索取更多资源

Transmitter release is triggered by highly localized, transient increases in the presynaptic Ca2+ concentration ([Ca2+]). Rapidly decaying [Ca2+] elevations were generated using Ca2+ uncaging techniques, and [Ca2+] was measured with a low-affinity Ca2+ indicator in a giant presynaptic terminal, the calyx of Held, in rat brain slices. The rise time and amplitude of evoked excitatory postsynaptic currents (EPSCs) depended on the half-width of the fluorescence transient, which was predicted by a five - binding site model of a Ca2+ sensor having relatively high affinity (K-d similar to 13 mu M). Very fast [Ca2+] transients (half- width < 0.5 ms) evoked EPSCs similar to those elicited by a single action potential (AP) in the same synapse. Triggering release with dual [Ca2+] transients of variable amplitudes demonstrated the supralinear transfer function of the sensor. The sensitivity of release to the time course of the [Ca2+] transient may contribute to mechanisms by which the presynaptic AP waveform controls synaptic strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据