4.3 Article

Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury

期刊

SPINAL CORD
卷 43, 期 4, 页码 204-213

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.sc.3101674

关键词

spinal cord injury; reactive oxygen species; cytochrome c; caspase-3; apoptosis; motor neuron

资金

  1. NHLBI NIH HHS [HL75034] Funding Source: Medline
  2. NINDS NIH HHS [NS45829] Funding Source: Medline

向作者/读者索取更多资源

Study design: Experimental laboratory investigation of the role and pathways of reactive oxygen species (ROS)-mediated motor neuron cell death in a mouse model of compression spinal cord injury. Objectives: To analyze ROS-mediated oxidative stress propagation and signal transduction leading to motor neuron apoptosis induced by compression spinal cord injury. Setting: University of Louisville Health Science Center. Methods: Adult C57BL/6J mice and transgenic mice overexpressing SOD1 were severely lesioned at the lumbar region by compression spinal cord injury approach. Fluorescent oxidation, oxidative response gene expression and oxidative stress damage markers were used to assay spinal cord injury-mediated ROS generation and oxidative stress propagation. Biochemical and immunohistochemical analyses were applied to de. ne the ROS-mediated motor neuron apoptosis resulted from compression spinal cord injury. Results: ROS production was shown to be elevated in the lesioned spinal cord as detected by fluorescent oxidation assays. The early oxidative stress response markers, NF-kappa B transcriptional activation and c-Fos gene expression, were significantly increased after spinal cord injury. Lipid peroxidation and nucleic acid oxidation were also elevated in the lesioned spinal cord and motor neurons. Cytochrome c release, caspase-3 activation and apoptotic cell death were increased in the spinal cord motor neuron cells after spinal cord injury. On the other hand, transgenic mice overexpressing SOD1 showed lower levels of steady-state ROS production and reduction of motor neuron apoptosis compared to that of control mice after spinal cord injury. Conclusion: These data together provide direct evidence to demonstrate that the increased production of ROS is an early and likely causal event that contributes to the spinal cord motor neuron death following spinal cord injury. Thus, antioxidants/antioxidant enzyme intervention combined with other therapy may provide an effective approach to alleviate spinal cord injury-induced motor neuron damage and motor dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据