4.7 Article

Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia

期刊

NEUROBIOLOGY OF DISEASE
卷 18, 期 3, 页码 476-483

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.12.011

关键词

ischemia; CA1 astrocyte; glutamate transporter; transporter current; GLT1 transporter; GLAST transporter

向作者/读者索取更多资源

Astroglial glutamate transporters, GLT-1 and GLAST, play an essential role in removing released glutamate from the extracellular space and are essential for maintaining a low concentration of extracellular glutamate in the brain. It was hypothesized that impaired function of glial glutamate transporters induced by transient global ischemia may lead to an elevated level of extracellular glutamate and subsequent excitotoxic neuronal death. To test this hypothesis, in the present study, we performed whole-cell patch-clamp recording of hippocampal CA1 astrocytes in control or postischemic slices, and measured glutamate transporter activity by recording glutamate-evoked transporter currents. Six to 24 h after global ischemia, maximal amplitude of glutamate transporter currents recorded from postischemic CA1 strocytes was significantly reduced. Western blotting analysis indicated that transient global ischemia decreased the protein level of GLT-1 in the hippocampal CA1 area without affecting GLAST protein level. Further real-time quantitative RT-PCR assays showed that global ischemia resulted in a decrease in GLT-1 mRNA level of hippocampal CA1 region. Global ischemia-induced reduction in GLT-1 expression and glutamate transporter function of CA1 astrocytes precedes the initiation of delayed neuronal death in CA1 pyramidal layer. The present study provides the evidence that transient global ischemia downregulates glutamate transporter function of hippocampal CA1 astrocytes by decreasing mRNA and protein levels of GLT-1. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据