4.8 Review

Multielectron redox chemistry of iron porphyrinogens

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 13, 页码 4730-4743

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja043132r

关键词

-

向作者/读者索取更多资源

Iron octamethylporphyrinogens were prepared and structurally characterized in three different oxidation states in the absence of axial ligands and with sodium or tetrafluoroborate as the only counterions. Under these conditions, the iron- and ligand-based redox chemistry of iron porphyrinogens can be defined. The iron center is easily oxidized by a single electron (E-1/2 = -0.57 V vs NHE in CH3CN) when confined within the fully reduced macrocycle. The porphyrinogen ligand also undergoes oxidation but in a single four-electron step (E-P = +0.77 V vs NHE in CH3CN); one of the ligand-based electrons is intercepted for the reduction of Fe(III) to Fe(II) to result in an overall three-electron oxidation process. The oxidation equivalents in the macrocycle are stored in C-alpha-C-alpha bonds of spirocyclopropane rings, formed between adjacent pyrroles. EPR, magnetic and Mossbauer measurements, and DFT computations of the redox states of the iron porphyrinogens reveal that the reduced ligand gives rise to iron in intermediate spin states, whereas the fully oxidized ligand possesses a weaker a-donor framework, giving rise to high-spin iron. Taken together, the results reported herein establish a metal -macrocycle cooperativity that engenders a multielectron chemistry for iron porphyrinogens that is unavailable to heme cofactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据