4.6 Article

Dimeric trigger factor stably binds folding-competent intermediates and cooperates with the DnaK-DnaJ-GrpE chaperone system to allow refolding

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 14, 页码 13315-13320

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M414151200

关键词

-

向作者/读者索取更多资源

Trigger factor (TF) is the first chaperone encountered by the nascent chain in bacteria and forms a stoichiometric complex with the ribosome. However, the functional significance of the high cytosolic concentration of uncomplexed TF, the majority of which is dimeric, is unknown. To gain insight into TF function, we investigated the TF concentration dependence of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reactivation yield in the presence and absence of the DnaK-DnaJ-GrpE chaperone system in vitro. Cross-linking results indicate that the observed decrease in the reactivation yield of GAPDH at high concentrations of TF is due to the formation of a stable complex between TF dimer and GAPDH intermediates. In the absence of TF, or at low TF concentrations, the DnaK-DnaJ-GrpE chaperone system had negligible effect on the GAPDH refolding yield. However, GAPDH intermediates bound and held by dimeric TF could be specifically rescued by the DnaK-DnaJ-GrpE chaperone system in an ATP-dependent manner. This indicates the potential of TF, in its dimeric form, to act as a binding chaperone, maintaining non-native proteins in a refolding competent conformation and cooperating with downstream molecular chaperones to facilitate post-translational or post-stress protein folding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据