4.6 Article

Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 14, 页码 13304-13314

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408194200

关键词

-

资金

  1. Medical Research Council [MC_U127015387] Funding Source: Medline
  2. MRC [MC_U127015387] Funding Source: UKRI

向作者/读者索取更多资源

The 90-kDa ribosomal S6 kinases (RSK1-3) are important mediators of growth factor stimulation of cellular proliferation, survival, and differentiation and are activated via coordinated phosphorylation by ERK and 3-phosphoinositide-dependent protein kinase-1 (PDK1). Here we performed the functional characterization of a predicted new human RSK homologue, RSK4. We showed that RSK4 is a predominantly cytosolic protein with very low expression and several characteristics of the RSK family kinases, including the presence of two functional kinase domains and a C-terminal docking site for ERK. Surprisingly, however, in all cell types analyzed, endogenous RSK4 was maximally (constitutively) activated under serum-starved conditions where other RSKs are inactive due to their requirement for growth factor stimulation. Constitutive activation appeared to result from constitutive phosphorylation of Ser(232), Ser(372), and Ser(389), and the low basal ERK activity in serum-starved cells appeared to be sufficient for induction of similar to 50% of the constitutive RSK4 activity. Finally experiments in mouse embryonic stem cells with targeted deletion of the PDK1 gene suggested that PDK1 was not required for phosphorylation of Ser232, a key regulatory site in the activation loop of the N-terminal kinase domain, that in other RSKs is phosphorylated by PDK1. The unusual regulation and growth factor-independent kinase activity indicate that RSK4 is functionally distinct from other RSKs and may help explain recent findings suggesting that RSK4 can participate in non-growth factor signaling as for instance p53-induced growth arrest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据