4.6 Article

Spatially resolved imaging of inhomogeneous charge transfer behavior in polymorphous molybdenum oxide. II. Correlation of localized coloration/insertion properties using spectroelectrochemical microscopy

期刊

LANGMUIR
卷 21, 期 8, 页码 3529-3538

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la047273i

关键词

-

向作者/读者索取更多资源

A newly developed spectroelectrochemical imaging approach for directly assessing lithium ion insertion energetics and kinetics in mixed-phase, polymorphous MoO3 is reported. Two variants of spectroelectrochemical microscopy were used to monitor insertion dynamics and to follow electrochemically induced phase transformations at specifically identified structural and compositional domains. Cyclovoltoabsorptometric (dOD/dE) measurements carried out in LiClO4/propylene carbonate solutions reveal that the lithium insertion is nonuniform and can be directly correlated with phase-segregated domains comprising alpha-MoO3, beta-MoO3, and intermixed alpha-/beta-MoO3- Lithium insertion is found to proceed by a staging process where each phase displays energetically distinct insertion behaviors. Chronoabsorptometric imaging measurements allow for the simultaneous estimation of lithium diffusion coefficients, ionic conductivities, and lithium capacities at isolated phases within the polymorphous material. The lithium diffusion coefficient and ionic conductivity is largest for domains comprising intermixed alpha-/beta-MoO3, whereas it is smallest at domains consisting of beta-MoO3. The higher diffusion coefficient observed for intermixed alpha-/beta-MoO3 domains is most likely due to larger thermodynamic enhancement factors for the mixed phase domains than for domains consisting of either alpha-MoO3 or beta-MoO3. Estimation ofcapacity values within each uniquely identified domain reveals that the lithium insertion capacity is about 4 times greater in alpha-MoO3 than in beta-MoO3. The discrepancies between the lithium insertion capacities can be rationalized in terms of lattice oxygen defects, which effectively reduce the number of available lithium insertion sites in beta-MoO3 as compared to alpha-MoO3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据