4.6 Article

Discrete material optimization of general composite shell structures

期刊

出版社

WILEY
DOI: 10.1002/nme.1259

关键词

topology optimization; multiphase material optimization; shell structures; design sensitivity analysis; composite laminates

向作者/读者索取更多资源

A novel method for doing material optimization of general composite laminate shell structures is presented and its capabilities are illustrated with three examples. The method is labelled Discrete Material Optimization (DMO) but uses gradient information combined with mathematical programming to solve a discrete optimization problem. The method can be used to solve the orientation problem of orthotropic materials and the material selection problem as well as problems involving both. The method relies on ideas from multiphase topology optimization to achieve a parametrization which is very general and reduces the risk of obtaining a local optimum solution for the tested configurations. The applicability of the DMO method is demonstrated for fibre angle optimization of a cantilever beam and combined fibre angle and material selection optimization of a four-point beam bending problem and a doubly curved laminated shell. Copyright (c) 2005 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据