4.5 Article

Density functional theory of solvation and its relation to implicit solvent models

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 109, 期 14, 页码 6754-6763

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp045453v

关键词

-

向作者/读者索取更多资源

We describe a density functional theory approach to solvation in molecular solvents. The solvation free energy of a complex solute can be obtained by direct minimization of a density functional, instead of the thermodynamic integration scheme necessary when using atomistic simulations. In the homogeneous reference fluid approximation, the expression of the free-energy functional relies on the knowledge of the direct correlation function of the pure solvent. After discussing general molecular solvents, we present a generic density functional describing a dipolar solvent and we show how it can be reduced to the conventional implicit solvent models when the solvent microscopic structure is neglected. With respect to those models, the functional includes additional effects such as the microscopic structure of the solvent, the dipolar saturation effect, and the nonlocal character of the dielectric constant. We also show how this functional can be minimized numerically on a three-dimensional grid around a solute of complex shape to provide, in a single shot, both the average solvent structure and the absolute solvation free energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据