4.7 Article

Potassium channel blockers inhibit the triggers of attacks in the calcium channel mouse mutant tottering

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 16, 页码 4141-4145

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0098-05.2005

关键词

aminopyridine; channelopathy; caffeine; stress; cerebellum; tottering mouse; dystonia; potassium; calcium channel

资金

  1. NINDS NIH HHS [R01 NS033592, NS33592] Funding Source: Medline

向作者/读者索取更多资源

Humans with the disorder episodic ataxia type 2 (EA2) and the tottering mouse mutant exhibit episodic attacks induced by emotional and chemical stress. Both the human and mouse disorders result from mutations in CACNA1A, the gene encoding the alpha(1)2.1 subunit of Ca(v)2.1 voltage-gated calcium channels. These mutations predict reduced calcium currents, particularly in cerebellar Purkinje cells, where these channels are most abundant. 4-Aminopyridine (4-AP), a nonselective blocker of K-v voltage-gated potassium channels, alleviates attacks of ataxia in EA2 patients. To test the specificity of the effect for Kv channels, aminopyridine analogs were assessed for their ability to ameliorate attacks of dyskinesia in tottering mice. 4-AP and 3,4-diaminopyridine ( 3,4-DiAP), which have relatively high affinities for Kv channels, reduced the frequency of restraint- and caffeine-induced attacks. Furthermore, microinjection of 3,4-DiAP into the cerebellum completely blocked attacks in tottering mice. Other aminopyridine analogs reduced attack frequency but, consistent with their lower affinities for Kv channels, required comparatively higher doses. These results suggest that aminopyridines block tottering mouse attacks via cerebellar K-v channels. That both stress- and caffeine-induced attacks were blocked by aminopyridines suggests that these triggers act via similar mechanisms. Although 4-AP and 3,4-DiAP were effective in preventing attacks in tottering mice, these compounds did not affect the severity of breakthrough attacks that occurred in the presence of a drug. These results suggest that the aminopyridines increase the threshold for attack initiation without mitigating the character of the attack, indicating that attack initiation is mediated by mechanisms that are independent of the neurological phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据