4.5 Article

Simulation of electron transfer between cytochrome c2 and the bacterial photosynthetic reaction center:: Brownian dynamics analysis of the native proteins and double mutants

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 109, 期 15, 页码 7529-7534

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp045417w

关键词

-

向作者/读者索取更多资源

Electron transfer is essential for bacterial photosynthesis which converts light energy into chemical energy. This paper theoretically studies the interprotein electron transfer from cytochrome c(2) of Rhodobacter capsulatus to the photosynthetic reaction center of Rhodobacter sphaeroides in native and mutated systems. Brownian dynamics is used with an exponential distance-dependent electron-transfer rate model to compute bimolecular rate constants, which are consistent with experimental data when reasonable prefactors and decay constants are used. Interestingly, switching of the reaction mechanism from the diffusion-controlled limit in the native proteins to the activation-controlled limit in one of the mutants (DK(L261)/KE(C99)) was found. We also predict that the second-order rate for the native reaction center/cytochrome c(2) system will decrease with increasing ionic strength, a characteristic of electrostatically controlled docking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据