4.6 Article

Action of designer cellulosomes on homogeneous versus complex substrates -: Controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 16, 页码 16325-16334

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M414449200

关键词

-

向作者/读者索取更多资源

In recent work (Fierobe, H.- P., Bayer, E. A., Tardif, C., Czjzek, M., Mechaly, A., Belai ch, A., Lamed, R., Shoham, Y., and Belaich, J.- P. ( 2002) J. Biol. Chem. 277, 49621 49630), we reported the self-assembly of a comprehensive set of defined bifunctional chimeric cellulosomes. Each complex contained the following: ( i) a chimeric scaffoldin possessing a cellulose-binding module and two cohesins of divergent specificity and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. This approach allowed the controlled integration of desired enzymes into a multiprotein complex of predetermined stoichiometry and topology. The observed enhanced synergy on recalcitrant substrates by the bifunctional designer cellulosomes was ascribed to two major factors: substrate targeting and proximity of the two catalytic components. In the present work, the capacity of the previously described chimeric cellulosomes was amplified by developing a third divergent cohesin-dockerin device. The resultant trifunctional designer cellulosomes were assayed on homogeneous and complex substrates ( microcrystalline cellulose and straw, respectively) and found to be considerably more active than the corresponding free enzyme or bifunctional systems. The results indicate that the synergy between two prominent cellulosomal enzymes ( from the family-48 and -9 glycoside hydrolases) plays a crucial role during the degradation of cellulose by cellulosomes and that one dominant family-48 processive endoglucanase per complex is sufficient to achieve optimal levels of synergistic activity. Furthermore cooperation within a cellulosome chimera between cellulases and a hemicellulase from different microorganisms was achieved, leading to a trifunctional complex with enhanced activity on a complex substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据