4.4 Article

Protein topology affects the appearance of intermediates during the folding of proteins with a flavodoxin-like fold

期刊

BIOPHYSICAL CHEMISTRY
卷 114, 期 2-3, 页码 181-189

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bpc.2004.12.005

关键词

protein folding; topology; flavodoxin; CheY; cutinase; folding intermediate

向作者/读者索取更多资源

The topology of a native protein influences the rate with which it is formed, but does topology affect the appearance of folding intermediates and their specific role in kinetic folding as well? This question is addressed by comparing the folding data recently obtained on apoflavodoxin from Azotobacter vinelandii with those available on all three other alpha-beta parallel proteins the kinetic folding mechanism of which has been studied, i.e. Anabaena apoflavodoxin, Fusarium solani pisi cutinase and CheY. Two kinetic folding intermediates, one onpathway and the other off-pathway, seem to be present during the folding of proteins with an alpha-beta parallel, also called flavodoxin-like, topology. The on-pathway intermediate lies on a direct route from the unfolded to the native state of the protein involved. The off-pathway intermediate needs to unfold to allow the production of native protein. Available simulation data of the folding of CheY show the involvement of two intermediates with characteristics that resemble those of the two intermediates experimentally observed. Apparently, protein topology governs the appearance and kinetic roles of protein folding intermediates during the folding of proteins that have a flavodoxin-like fold. (c) 2004 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据