4.6 Article

Conformational study of the structure of free 18-crown-6

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 109, 期 16, 页码 3694-3703

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp050133c

关键词

-

向作者/读者索取更多资源

A conformational search was performed for 18-crown-6 using the CONLEX method at the MM3 level. To have a more accurate energy order of the predicted conformations, the predicted conformations were geometry optimized at the HF/STO-3G level and the 198 lowest energy conformations, according to the HF/STO-3G energy order, were geometry optimized at the HF/6-31+G* level. In addition, the 47 nonredundant lowest energy conformations, according to the MP2/6-31+G* energy order at the HF/6-31+G* optimized geometry, hereafter the MP2/6-31 +G*//HF/6-31 +G* energy order, were geometry optimized at the B3LYP/6-31+G* level. According to the MP2/6-31+G*//B3LYP/6-31+G* energy order, three conformations had energies lower than the experimentally known C-i conformation of 18c6. At the MP2/6-31+G*//B3LYP/6-31+G* level, the S-6 lowest energy conformation is more stable by 1.96 kcal/mol than this Ci conformation. This was confirmed by results at the MP2/6-31+G* level with an energy difference of 1.84 kcal/mol. Comparison between the structure of the S-6 conformation of 18c6 and the S-4 lowest energy conformation of 12-crown-4, as well as other important conformations of both molecules, is made. It is concluded that the correlation energy is necessary to have an accurate energy order of the predicted conformations. A rationalization of the conformational energy order in terms of the hydrogen bonding and conformational dihedral angles is given. It is also suggested that to have a better energy order of the predicted conformations at the MM3 level, better empirical force fields corresponding to the hydrogen bond interactions are needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据