3.8 Review

Applications of field-theoretic renormalization group methods to reaction-diffusion problems

期刊

JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
卷 38, 期 17, 页码 R79-R131

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0305-4470/38/17/R01

关键词

-

向作者/读者索取更多资源

We review the application of field-theoretic renormalization group (RG) methods to the study of fluctuations in reaction-diffusion problems. We first investigate the physical origin of universality in these systems, before comparing RG methods to other available analytic techniques, including exact solutions and Smoluchowski-type approximations. Starting from the microscopic reaction-diffusion master equation, we then pedagogically detail the mapping to a field theory for the single-species reaction kA -> lA (l < k). We employ this particularly simple but non-trivial system to introduce the field-theoretic RG tools, including the diagrammatic perturbation expansion, renormalization and Callan-Symanzik RG flow equation. We demonstrate how these techniques permit the calculation of universal quantities such as density decay exponents and amplitudes via perturbative epsilon = d(c) - d expansions with respect to the upper critical dimension d, With these basics established, we then provide an overview of more sophisticated applications to multiple species reactions, disorder effects, Levy flights, persistence problems and the influence of spatial boundaries. We also analyse field-theoretic approaches to non-equilibrium phase transitions separating active from absorbing states. We focus particularly on the generic directed percolation universality class, as well as on the most prominent exception to this class: even-offspring branching and annihilating random walks. Finally, we summarize the state of the field and present our perspective on outstanding problems for the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据