4.7 Article

mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways:: Identification of IL-20 receptor-mediated bystander activity against pancreatic cancer

期刊

MOLECULAR THERAPY
卷 11, 期 5, 页码 724-733

出版社

CELL PRESS
DOI: 10.1016/j.ymthe.2004.12.021

关键词

MDA-7; beta-catenin; apoptosis; IL-24; adenovirus; cancer gene therapy; IL-10; IL-20; IL-22; receptor

向作者/读者索取更多资源

The melanoma differentiation-associated gene (mda-7, approved gene symbol IL24) is a tumor suppressor gene whose protein expression in normal cells is restricted to the immune system and to melanocytes. Recent studies have shown that mda-7 gene transfer inhibits cell growth and induces apoptosis in melanoma, lung cancer, breast cancer, and other tumor types through activation of various intracellular signaling pathways. In the current study, we demonstrate that Ad-mda7 transduction of human pancreatic cancer cells results in G(2)/M cell cycle arrest and cell killing. Cytotoxicity is mediated via apoptosis in a time- and dose-dependent manner. Tumor and cell killing correlates with regulation of proteins involved in the Wnt and PI3K pathways: beta-catenin, APC, GSK-3, JNK, and PTEN. Additionally, we identify bystander cell killing activated by exposure of pancreatic tumor cells to secreted human MDA-7 protein. In pancreatic tumor cells, exogenous MDA-7 protein activates STAT3 and kills cells via engagement of IL-20 receptors. The specificity of bystander killing is demonstrated using neutralizing anti-MDA-7 antibodies and anti-receptor antibodies, which inhibit the apoptotic effects. In sum, we show that Ad-mda7 is able to induce growth inhibition and apoptosis in pancreatic cancer cells via inhibition of the Wnt/PI3K pathways and identify a novel bystander mechanism of MDA-7 killing in pancreatic cancer that functions via IL-20 receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据