4.8 Article Proceedings Paper

Binding between particles and proteins in extracts: implications for microrheology and toxicity

期刊

ACTA BIOMATERIALIA
卷 1, 期 3, 页码 305-315

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2005.02.002

关键词

-

向作者/读者索取更多资源

Understanding and controlling the interactions between foreign materials and cytoplasmic proteins is key for the design of intracellular probes, and for uncovering mechanisms of micro and nanoparticle toxicity. Here we examine these interactions by characterizing protein adsorption from cell extracts to a range of micron and sub-micron particles, and by measuring the Brownian motions of particles in live cells and reconstituted networks as ail in situ measure of association. Testing SiO2, TiO2 and polystyrene particles with varying surface carboxylation, together with protein and polyethylene glycol surface coatings, we find that cellular associations and protein binding both strongly depend oil particle surface chemistry. Cytoskeletal proteins, most notably actin and intermediate filament family members, are among the proteins most concentrated oil the surfaces of all particles tested. The nanoscale movements of microinjected particles that primarily bind vimentin intermediate filaments are larger than particles that can also bind actin. This difference disappears when the same particles are endocytosed, suggesting that endocytic membranes mask particle surfaces. We discovered one brand of carboxylated SiO2 particles that is remarkably resistant to protein binding in extracts. By coupling the actin binding molecule phalloidin to these particles, we converted their surface from non-binding to actin-binding. We illustrate the efficacy of the conversion in reconstituted actin gels. (c) 2005 Acta materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据