4.6 Article

Evaporation of ion-irradiated disks

期刊

ASTRONOMY & ASTROPHYSICS
卷 434, 期 2, 页码 415-422

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20042517

关键词

accretion; accretion disks; black hole physics; X-rays : binaries; galaxies : active

向作者/读者索取更多资源

We calculate the evaporation of a cool accretion disk around a black hole due to the ion-bombardment by an ion supported accretion flow (here ISAF, or optically thin ADAF). As first suggested by Spruit & Deufel (2002), this evaporation takes place in two stages: ion bombardment of the cool disk (Shakura-Sunyaev disk: SSD) produces an intermediate-temperature layer on top of the disk (warm layer) which constitutes an independent accretion flow on both sides of the SSD. As this warm material accretes inward of the inner radius of the SSD, it becomes thermally unstable by lack of cooling of photons, and evaporates into the ISAF, thereby feeding the latter. Angular momentum conservation forces a certain fraction of the ISAF material to move outward, where it can bombard the SSD with its hot ions. The flow geometry is derived by computing stationary solutions of the continuity- and angular momentum equations for the three components (ISAF, warm flow and SSD). The overall radiative output is dominated by hard X-rays. They are produced mostly from the warm component, rather than the ISAF. The expected time dependence and stability of the flow, not computed here, is discussed briefly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据