4.7 Article

Modeling of thermotransport phenomenon in metal alloys using artificial neural networks

期刊

APPLIED MATHEMATICAL MODELLING
卷 37, 期 5, 页码 2850-2869

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2012.06.018

关键词

Thermotransport factor; Metal alloys; Artificial neural network; Modeling and validation

资金

  1. Canadian Space Agency
  2. European Space Agency
  3. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Thermodiffusion in molten metals, also known as thermotransport, a phenomenon in which constituent elements of an alloy separate under the influence of non-uniform temperature field, is of significance in several applications. However, due to the complex inter-particle interactions, there is no theoretical formulation that can model this phenomenon with adequate accuracy. Keeping in mind the severe deficiencies of the present day thermotransport models and an urgent need of a reliable method in several engineering applications ranging from crystal growth to integrated circuit design to nuclear reactor designs, an engineering approach has been taken in which neurocomputing principles have been employed to develop artificial neural network models to study and quantify the thermotransport phenomenon in binary metal alloys. Unlike any other thermotransport model for molten metals, the neural network approach has been validated for several types of binary alloys, viz., concentrated, dilute, isotopic and non-isotopic metals. Additionally, to establish the soundness of the model and to highlight its potential as a unified computational analysis tool, it ability to capture several thermotransport trends has been shown. Comparison with other models from the literature has also been made indicating a superior performance of this technique with respect to several other well established thermotransport models. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据