4.7 Article

Practical application of dynamic temperature profiles to estimate the parameters of the square root model

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijfoodmicro.2004.10.042

关键词

optimal experimental design; predictive microbiology; square root model; dynamic experiments

向作者/读者索取更多资源

Optimal experimental design for parameter estimation (OED/PE) is a promising method to improve parameter estimation accuracy and minimise experimental effort in the field of predictive microbiology. In this paper, the OED/PE methodology was applied on two practical examples: the growth of Bacillus cereus and Enterobacter cloacae in liquid whole egg product. Both strains were recovered from samples of a commercial product. The goal of the modelling exercise was to quantify the influence of temperature on bacterial growth. The Baranyi-model for bacterial growth combined with the Ratkowsky square root model to describe temperature dependence was used. Using this model, a temperature step profile was calculated based on the optimal D-criterion. The model was then fitted against the experimental bacterial growth curve measured under the dynamic temperature conditions. This process was repeated until the parameters could be estimated with sufficient accuracy, apparent by the model prediction errors. For B. cereus, prior information could be extracted from the literature, allowing calculating a dynamic temperature profile directly. Two-step profiles were sufficient to obtain a good estimation for the model parameters. No prior information could be found for E. cloacae. Therefore, a limited series of static experiments had to be conducted to obtain usable prior model parameters estimates. Only one dynamic experiment was then needed to achieve a good estimation. © 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据