4.7 Article

Modelling of metal forging using SPH

期刊

APPLIED MATHEMATICAL MODELLING
卷 36, 期 8, 页码 3836-3855

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2011.11.019

关键词

SPH; Elastoplastic deformation; Forging; Metal forming; Defect; Plasticity

向作者/读者索取更多资源

In solid metal forming processes, such as forging, large distortions in the material present challenging problems for numerical simulation using grid based methods. Computations invariably fail after some level of mesh distortion is reached unless suitable re-meshing is implemented to cope with the mesh distortion arising from the material deformation. The issue of mesh distortion and the subsequent re-meshing are topics of much research for grid based methods. These problems can be overcome by using a mesh-less numerical framework. In this paper, the application of a mesh-less method called Smoothed Particle Hydrodynamics (SPH) for modelling three-dimensional complex forging processes is demonstrated. It is shown that SPH is a useful simulation method for obtaining insights into the material deformation and flow pattern during forging of realistic industrial components. The effect of process parameters and material properties on the quality of the forged component is evaluated via SPH simulations. This includes the determination of forging force required for adequate die filling which is an important criterion for die designs. Material hardening, controlled by the degree of heat treatment, is found to have a profound effect on the material deformation pattern and the final product. Forging defects such as incomplete die filling, asymmetry in forged components, flashing and lap formation are shown to be predicted by SPH. SPH can thus potentially be used both for assessment of the quality of forged products and evaluation of prototype forging system designs. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据