4.8 Article

Ectopic bone formation in rats: the importance of the carrier

期刊

BIOMATERIALS
卷 26, 期 14, 页码 1829-1835

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.06.016

关键词

bone tissue engineering; cell culture; osteogenesis; titanium; animal model; ceramics; hydroxyapatite; tricalcium phosphate

向作者/读者索取更多资源

Much research has been done to develop the ideal bone graft substitute (BGS). One approach to develop this ideal BGS is the use of growth factors, but for this approach osteoprogenitor cells are needed at the site of reconstruction. An alternative is a cell-based approach, where enough cells are provided to form bone in a carrier material. In previous studies of our group, titanium (Ti) carriers have been used, because of the excellent mechanical properties and the bone-compatibility of this material. On the other hand, calcium phosphate (CaP) ceramics are known for their excellent osteoconductivity. The aim of this study, is to investigate the influence of the carrier in a cell-based bone regeneration approach, whereby we hypothesize that CaP-ceramic implants will induce more bone formation than Ti-fiber implants, in the same animal model as our previous experiment. Ti-fiber mesh implants and ceramic implants were seeded with rat bone marrow cells (RBM) and implanted subcutaneously. Histological analysis after one, three and six weeks showed differences in the way of bone formation in the two groups: bone appeared to grow from the center to the periphery of the implant in the titanium group, while bone formation in the ceramic group occurred through the whole implant. Histomorphometrical analysis after one week showed very limited bone formation for both the titanium and ceramic group. At three weeks, the amount of bone formation was increased till about 10% for the titanium group and 18% for the ceramic group. No significant difference between the two groups could be observed. In the six week group, the bone formation was 6% (Ti) and 23% (Cap), respectively (P<0.0001). Further, bone formation started earlier in the CaP-ceramic scaffolds than in the Ti scaffolds. Our hypothesis could be confirmed: ceramic implants induce more bone formation than titanium implants. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据