4.7 Article

Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice

期刊

FASEB JOURNAL
卷 19, 期 7, 页码 761-772

出版社

WILEY
DOI: 10.1096/fj.04-3104com

关键词

chemokines; chemokine receptors; transgenic mice; macrophages

资金

  1. NINDS NIH HHS [3R01 NS32151-09] Funding Source: Medline

向作者/读者索取更多资源

Increased central nervous system (CNS) levels of monocyte chemoattractant protein 1 [CC chemokine ligand 2 (CCL2) in the systematic nomenclature] have been reported in chronic neurological diseases such as human immunodeficiency virus type 1-associated dementia, amyotrophic lateral sclerosis, and multiple sclerosis. However, a pathogenic role for CCL2 has not been confirmed, and there is no established model for the effects of chronic CCL2 expression on resident and recruited CNS cells. We report that aged (>6 months) transgenic (tg) mice expressing CCL2 under the control of the human glial fibrillary acidic protein promoter (huGFAP-CCL2(hi) tg(+) mice) manifested encephalopathy with mild perivascular leukocyte infiltration, impaired blood brain barrier function, and increased CD45-immunoreactive microglia, which had morphologic features of activation. huGFAP-CCL2(hi) tg(+) mice lacking CC chemokine receptor 2 (CCR2) were normal, showing that chemokine action via CCR2 was required. Studies of cortical slice preparations using video confocal microscopy showed that microglia in the CNS of huGFAP-CCL2(hi) tg(+) mice were defective in expressing amoeboid morphology. Treatment with mutant CCL2 peptides, a receptor antagonist and an obligate monomer, also suppressed morphological transformation in this assay, indicating a critical role for CCL2 in microglial activation and suggesting that chronic CCL2 exposure desensitized CCR2 on microglia, which in the CNS of huGFAP-CCL2(hi) tg(+) mice, did not up-regulate cell-surface expression of major histocompatibility complex class II, CD11b, CD11c, or CD40, in contrast to recruited perivascular macrophages that expressed enhanced levels of these markers. These results indicate that huGFAP-CCL2(hi) tg(+) mice provide a useful model to study how chronic CNS expression of CCL2 alters microglial function and CNS physiology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据