4.4 Article

A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/15/5/006

关键词

-

向作者/读者索取更多资源

This paper proposes a novel three-dimensional (3D) vortex micromixer for micro-total-analysis-systems (mu TAS) applications which utilizes self-rotation effects to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer is fabricated in a three-layer glass structure for delivering fluid samples in parallel. The fluids are driven into the circular mixing chamber by means of hydrodynamic pumps from two fluid inlet ports. The two inlet channels divide into eight individual channels tangent to a 3D circular chamber for the purpose of mixing. Numerical simulation of the microfluidic dynamics is employed to predict the self-rotation phenomenon and to estimate the mixing performance under various Reynolds number conditions. Experimental flow visualization by mixing dye samples is performed in order to verify the numerical simulation results. A good agreement is found to exist between the two sets of results. The numerical results indicate that the mixing performance can be as high as 90% within a mixing chamber of 1 mm diameter when the Reynolds number is Re = 4. Additionally, the results confirm that self-rotation in the circular mixer enhances the mixing performance significantly, even at low Reynolds numbers. The novel micromixing method presented in this study provides a simple solution to mixing problems in the lab-chip system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据