4.7 Article

Static analysis of functionally graded beams using higher order shear deformation theory

期刊

APPLIED MATHEMATICAL MODELLING
卷 32, 期 12, 页码 2509-2525

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2007.09.015

关键词

rotation of the normal; shear rotation; functionally graded metal-ceramic beam; transverse displacement; stresses

向作者/读者索取更多资源

Displacement field based on higher order shear deformation theory is implemented to study the static behavior of functionally graded metal-ceramic (FGM) beams under ambient temperature. FGM beams with variation of volume fraction of metal or ceramic based on power law exponent are considered. Using the principle of stationary potential energy, the finite element form of static equilibrium equation for FGM beam is presented. Two stiffness matrices are thus derived so that one among them will reflect the influence of rotation of the normal and the other shear rotation. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick FGM beam under uniform distributed load for clamped-clamped and simply supported boundary conditions are discussed in depth. The effect of power law exponent for various combination of metal-ceramic FGM beam on the deflection and stresses are also commented. The studies reveal that, depending on whether the loading is on the ceramic rich face or metal rich face of the beam, the static deflection and the static stresses in the beam do not remain the same. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据