4.5 Article Proceedings Paper

Opioid metabolites

期刊

JOURNAL OF PAIN AND SYMPTOM MANAGEMENT
卷 29, 期 5, 页码 S10-S24

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jpainsymman.2005.01.004

关键词

drug metabolism; analgesia; pharmacogenetics; drug interactions

向作者/读者索取更多资源

The metabolism of opioids closely relates to their chemical structure. Opioids are subject to O-dealkylation, N-dealkylation, ketoreduction, or deacetylation leading to phase-I metabolites. By glucuronidation or sulfatation, phase-II metabolites are formed. Some metabolites of opioids have an activity themselves and contribute to the effects of the parent compound. This can go as far that the main clinical activity is exerted through active metabolites while the parent compounds are only weak agonist at P-opioid receptors, as in the case of codeine and tilidine. The clinical effects of tramadol also involve an important contribution of its active metabolite. With morphine, the active metabolite morphine-6-glucuronide exerts important clinical opioid effects when it accumulates in the plasma of patients with renal failure. However, after short-term administration of morphine, its contribution to the central nervous effects of morphine is probably poor. Morphine-6-glucuronide has recently been identified to exert important peripheral opioid effects. By this, it may play an important role in the clinical effects of morphine. Several other opioids, such as meperidine and perhaps also morphine and hydromorphone, produce metabolites with neuroexcitatory effects. In sum, the evidence suggests that the metabolites Of several opioids account for an important Part of the clinical effects that must be considered in clinical practice. (c) 2005 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据