4.3 Article

Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering

期刊

JOURNAL OF ORTHOPAEDIC SCIENCE
卷 10, 期 3, 页码 302-307

出版社

ELSEVIER
DOI: 10.1007/s00776-005-0891-y

关键词

-

向作者/读者索取更多资源

Selecting the material for a scaffold is critically important for the success of tissue engineering. To simplify complicated biosynthetic matrices and achieve a novel class of potential materials, a model of polyion complex fibers was prepared from alginate and chitosan. In the current in vitro study, we thought that alginate-based chitosan hybrid biomaterials could provide excellent supports for fibroblast adhesion. In the current study, alginate polymer fiber (alginate group) and alginate-based chitosan hybrid polymer fibers (alginate with 0.05% chitosan, alginate-chitosan 0.05% group; alginate with 0.1% chitosan, alginate-chitosan 0.1% group) were originally prepared. We investigated the adhesion behavior of rabbit tendon fibroblast onto alginate polymer fibers versus the adhesion of the fibroblast onto alginate-based chitosan hybrid polymer fibers. Furthermore, mechanical properties and synthesis of the extracellular matrix were investigated. Mechanically, the novel fiber has considerable tensile strength of more than 200MPa. We demonstrated that the alginate-based chitosan hybrid polymer fibers showed much improved adhesion capacity with fibroblast compared with alginate polymer fiber. Additionally, morphologic studies revealed the dense fiber of the type I collagen produced by the fibroblast in the hybrid polymer fibers. We concluded that an alginate-based chitosan hybrid polymer fiber has considerable potential as a desirable biomaterial scaffold for tendon and ligament tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据