4.7 Article

Numerical simulation of tidal bores and hydraulic jumps

期刊

COASTAL ENGINEERING
卷 52, 期 5, 页码 409-433

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.coastaleng.2004.12.007

关键词

tidal bores; hydraulic jumps; the Huangzhou bore; numerical simulation

向作者/读者索取更多资源

An implicit finite difference formulation of the nonlinear shallow water equations is developed to allow for the treatment of tidal bores and hydraulic jumps. Five different schemes are investigated involving upwind treatment of convective terms, central differences combined with dissipative interface, forward time-centering and various combinations of these techniques. The schemes are analyzed with respect to their effective amplification portraits, and they are tested on periodic bores, uniform bores and steady hydraulic jumps. In this connection the model results are verified against analytical solutions and a numerical solution obtained with a Godunov Riemann solver. Scheme 4, which combines forward time centering and dissipative interface, is found to be superior to the others and it is applicable for Courant numbers within the range 0.25 to 1.5. This scheme is applied to a case study of the tidal bore in Huangzhou Bay and Qiantang River. The model results are shown to be in very good agreement with field data. (c) 2005 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据