4.5 Article

Inhibition of persistent sodium current fraction and voltage-gated L-type calcium current by propofol in cortical neurons: Implications for its antiepileptic activity

期刊

EPILEPSIA
卷 46, 期 5, 页码 624-635

出版社

WILEY
DOI: 10.1111/j.1528-1167.2005.34904.x

关键词

cortex; antiepileptic drugs; paroxysmal depolarizing shift; HVA calcium current; persistent sodium current

向作者/读者索取更多资源

Purpose: Although it is widely used in clinical practice, the mechanisms of action of 2,6-di-isopropylphenol (propofol) are not completely understood. We examined the electrophysiologic effects of propofol on an in vitro model of epileptic activity obtained from a slice preparation. Methods: The effects of propofol were tested both on membrane properties and on epileptiform events consisting of long-lasting, paroxysmal depolarization shifts (PDSs) induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine.These results were integrated with a patch-clamp analysis of Na+ and high-voltage activated (HVA) calcium (Ca2+) currents from isolated cortical neurons. Results: In bicuculline, to avoid any interference by gamma-aminobutyric acid (GABA)-A receptors, propofol (3-100 mu M) did not cause significant changes in the current-evoked, sodium (Na+)-dependent action-potential discharge. However, propofol reduced both the duration and the number of spikes of PDSs recorded from cortical neurons. Interestingly, relatively low concentrations of propofol [half-maximal inhibitory concentration (IC50), 3.9 mu M) consistently inhibited the persistent fraction of Na+ currents, whereas even high doses (<= 300 mu M) had negligible effects on the fast component of Na+ currents. HVA Ca2+ currents were significantly reduced by propofol, and the pharmacologic analysis of this effect showed that propofol selectively reduced L-type HVA Ca2+ currents, without affecting N or P/Q-type channels. Conclusions: These results suggest that propofol modulates neuronal excitability by selectively suppressing persistent Na+ currents and L-type HVA Ca2+ conductances in cortical neurons. These effects might cooperate with the opening of GABA-A-gated chloride channels, to achieve depression of cortical activity during both anesthesia and status epilepticus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据