4.0 Article

A role for Synapsin in associative learning:: The Drosophila larva as a study case

期刊

LEARNING & MEMORY
卷 12, 期 3, 页码 224-231

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/lm.92805

关键词

-

向作者/读者索取更多资源

Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a prerequisite for synaptic plasticity, we use the fruit fly Drosophila to ask whether Synapsin has a role in behavioral plasticity as well; in fruit flies, Synapsin is encoded by a single gene (syn). We tackled this question for associative olfactory learning in larval Drosophila by using the deletion mutant syn(97CS) which had been backcrossed to the Canton-S wild-type strain (CS) for 13 generations. We provide a molecular account of the genomic status of syn(97CS) by PCR and show the absence of gene product on Western blots and nerve-muscle preparations. We found that olfactory associative learning in syn(97CS) larvae is reduced to similar to 50% of wild-type CS levels; however, responsiveness to the to-be-associated stimuli and motor performance in untrained animals are normal. In addition, we introduce two novel behavioral control procedures to test stimulus responsiveness and motor performance after sham training. Wild-type CS and syn(97CS) perform indistinguishably also in these tests. Thus, larval Drosophila can be used as a case Study for a role of Synapsin in associative learning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据