4.8 Article

Power electronics cooling effectiveness versus thermal inertia

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 20, 期 3, 页码 687-693

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2005.846548

关键词

liquid cooled plate; load variation frequencies; power electronics integration; silicon; thermal inertia

向作者/读者索取更多资源

Today, the popularity of power electronics integration is increasing. Despite the prospect of fully integrated module, including features like driving and control electronics, protection, power integration has not taken-off for medium to high power electronics applications. Manufacturing issues such as yield, reliability and return-on-investment for a new fabrication line are the major blocking points. As a first step toward integrated modules, integration of the cooling system appears realistic and cost effective. Increasing the cooling effectiveness could double the output current of an inverter while using the same amount of silicon. On the other hand, integrated cooling leads to small thermal inertia, which can generate high temperature variation under load cycling condition. This paper highlights the relationship between cooling effectiveness and thermal inertia. Typical performances of several cooling systems are compared under load cycling condition to explain how to take into account the variation of the losses in the choice of a cooling technique at the design stage. As an example, a standard liquid cooled plate performed similar to an integrated microchannel network for specific load variation frequencies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据