4.8 Article

Silicon chip interfaced with a geometrically defined net of snail neurons

向作者/读者索取更多资源

We have successfully interfaced living neuronal networks with a defined geometry of synaptic connections to a semiconductor chip, enabling a non-invasive supervision of network activity at a single-cell level. Two networks of two and four neurons are presented and the signaling pathways are discussed. The outgrowth of neurons from the pond snail Lymnaea stagnalis and the formation of synapses are controlled by topographical structures processed from a polyester resist. Action potentials are evoked in individual neurons by capacitive stimulators integrated in the chip. They propagate along guided neurites, pass through electrical synapses, and trigger postsynaptic excitations that are recorded by field-effect transistors. The networks represent proof-of-principle experiments for the development of complex hybrid neuroelectronic devices for applications in brain research, pharmacology, and information technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据