4.8 Article

Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering

期刊

BIOMATERIALS
卷 26, 期 14, 页码 1945-1952

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.06.030

关键词

cartilage tissue engineering; cartilage repair; ECM glycosaminoglycan; microsphere; scaffold; PLG

向作者/读者索取更多资源

This study demonstrates the use of biodegradable poly(lactide-co-glycolide) (PLG) microspheres as a moldable scaffold for cartilage tissue engineering. Chondrocytes were delivered to a cylindrical mold with or without PLG microspheres, and cultured in vitro for up to 8 weeks. Cartilagenous tissue formed using chondrocytes and microspheres maintained thickness, shape, and chondrocyte collagen type II phenotype, as indicated by type II collagen staining. The presence of microspheres further enhanced total tissue mass and the amount of glycosaminoglycan that accumulated. Evaluation of microsphere composition demonstrated effects of polymer molecular weight, end group chemistry, and buffer inclusion on tissue-engineered cartilage growth. Higher molecular weight PLG resulted in a larger mass of cartilage-like tissue formed and a higher content of proteoglycans. Cartilage-like tissue formed using microspheres made from low molecular weight and free carboxylic acid end groups did not display increases in tissue mass, yet a modest increased proteoglycan accumulation was detected. Microspheres comprised of PLG with methyl ester end groups yielded a steady increase in tissue mass, with no real increase in matrix accumulation. The microencapsulation of Mg(OH)(2) had negative effects on tissue mass and matrix accumulation. The data herein reflect the potential utility of a moldable PLG-chondrocyte system for tissue-engineering applications. (C) 2004 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据